Wnt5a controls Notch1 signaling through CaMKII-mediated degradation of the SMRT corepressor protein.

نویسندگان

  • Eun-Jung Ann
  • Hwa-Young Kim
  • Mi-Sun Seo
  • Jung-Soon Mo
  • Mi-Yeon Kim
  • Ji-Hye Yoon
  • Ji-Seon Ahn
  • Hee-Sae Park
چکیده

Serine-threonine Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is the key component in noncanonical Wnt5a signaling and has been shown to regulate its signaling. In this study, we found that CaMKII induced by Wnt5a remarkably reduced the protein stability of the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT), a co-repressor of Notch signaling, through proteasomal degradation. Wnt5a was found to enhance Notch1 intracellular domain (Notch1-IC) transcription activity, which could be inhibited by treatment with KN93, a CaMKII inhibitor. The kinase activity of CaMKII was essential for the activation of Notch signaling. We also determined that CaMKII could enhance the association between Notch1-IC and RBP-Jk. Furthermore, the physical association between RBP-Jk and SMRT was substantially suppressed by CaMKII. We demonstrated that CaMKII directly bound and phosphorylated SMRT at Ser-1407, thereby facilitating SMRT translocation from the nucleus to the cytoplasm and proteasome-dependent degradation. These results suggest that CaMKII down-regulated the protein stability of SMRT through proteasomal degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of Wnt5a with Notch1 is Critical for the Pathogenesis of Psoriasis.

BACKGROUND Psoriasis is characterized by uncontrolled hyperproliferation, aberrant differentiation, and dermal infiltration of immune cells. Recent studies have reported that Wnt5a and Notch1 signaling are altered in psoriatic skin lesions. OBJECTIVE We aimed to investigate the interaction of Wnt5a with Notch 1 with respect to inflammation-mediated epidermal hyperproliferation in psoriasis. ...

متن کامل

Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk.

The Notch1 receptor is a crucial controller of cell fate decisions, and is also a key regulator of cell growth and differentiation in a variety of contexts. In this study, we have demonstrated that the APP intracellular domain (AICD) attenuates Notch1 signaling by accelerated degradation of the Notch1 intracellular domain (Notch1-IC) and RBP-Jk, through different degradation pathways. AICD supp...

متن کامل

Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase.

Notch is a transmembrane protein that acts as a transcriptional factor in the Notch signaling pathway for cell survival, cell death and cell differentiation. Notch1 and Fbw7 mutations both lead the activation of the Notch1 pathway and are found in the majority of patients with the leukemia T-ALL. However, little is known about the mechanisms and regulators that are responsible for attenuating t...

متن کامل

Wnt5a Evokes Cortical Axon Outgrowth and Repulsive Guidance by Tau Mediated Reorganization of Dynamic Microtubules

Wnt5a guides cortical axons in vivo by repulsion and in vitro evokes cortical axon outgrowth and repulsion by calcium signaling pathways. Here we examined the role of microtubule (MT) reorganization and dynamics in mediating effects of Wnt5a. Inhibiting MT dynamics with nocodazole and taxol abolished Wnt5a evoked axon outgrowth and repulsion of cultured hamster cortical neurons. EGFP-EB3 labele...

متن کامل

Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT

Silencing mediator for retinoic acid and thyroid hormone receptor (SMRT) is a transcriptional corepressor that participates in diverse signaling pathways and human diseases. However, regulation of SMRT stability remains largely unexplored. We show that the peptidyl-prolyl isomerase Pin1 interacts with SMRT both in vitro and in mammalian cells. This interaction requires the WW domain of Pin1 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 44  شماره 

صفحات  -

تاریخ انتشار 2012